GROKKING MACHINE LEARNING

GROKKING MACHINE LEARNING

LUIS SERRANO

87,36 €
IVA incluido
Disponible en 1 semana
Editorial:
MANNING PUBLICATIONS
Año de edición:
2021
Materia
Informática
ISBN:
978-1-61729-591-1
Edición:
1
87,36 €
IVA incluido
Disponible en 1 semana

Discover valuable machine learning techniques you can understand and apply using just high-school math. Grokking Machine Learning you will learn: Supervised algorithms for classifying and splitting data Methods for cleaning and simplifying data Machine learning packages and ools Neural networks and ensemble methods for complex datasets Grokking Machine Learning teaches you how to apply ML to your projects using only standard Python code and high school-level math. No specialist knowledge is required to tackle the hands-on exercises using Python and readily available machine learning tools. Packed with easy-to-follow Python-based exercises and mini-projects, this book sets you on the path to becoming a machine learning expert. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Discover powerful machine learning techniques you can understand and apply using only high school math! Put simply, machine learning is a set of techniques for data analysis based on algorithms that deliver better results as you give them more data. ML powers many cutting-edge technologies, such as recommendation systems, facial recognition software, smart speakers, and even self-driving cars. This unique book introduces the core concepts of machine learning, using relatable examples, engaging exercises, and crisp illustrations. About the book Grokking Machine Learning presents machine learning algorithms and techniques in a way that anyone can understand. This book skips the confused academic jargon and offers clear explanations that require only basic algebra. As you go, you’ll build interesting projects with Python, including models for spam detection and image recognition. You’ll also pick up practical skills for cleaning and preparing data. What's inside Supervised algorithms for classifying and splitting data Methods for cleaning and simplifying data Machine learning packages and ools Neural networks and ensemble methods for complex datasets About the reader For readers who know basic Python. No machine learning knowledge necessary. About the author Luis G. errano is a research scientist in quantum artificial intelligence. Previously, he was a Machine Learning Engineer at Google and Lead Artificial Intelligence Educator at Apple.Table of Contents 1 What is machine learning? It is common sense, except done by a computer 2 Types of machine earning 3 Drawing a line close to our points: Linear regression 4 Optimizing the training process: Underfitting, overfitting, testing, and regularizationerceptron algorithm 6 A continuous approach to splitting points: Logistic classifiers 7 How do you measure classification models? Accuracy and its friends 8 Using probability to its maximum: The naive Bayes model 9 Splitting data by asking questions: Decision trees 10 Combining building blocks to gain more power: Neural networks 11 Finding boundaries with style: Support vector machines and the kernel method 12 Combining models to maximize results: Ensemble learning 13 Putting it all in practice: A real-life example of data engineering and machine learning

Artículos relacionados

  • NOSOTROS, LOS PROGRAMADORES
    MARTIN, R.
    La leyenda del software Robert C. Martin ("Uncle Bob") se sumerge en el mundo de la programación, explorando la vida de los pioneros revolucionarios que crearon los cimientos de la informática moderna. Desde Charles Babbage y Ada Lovelace a Alan Turing, Grace Hopper y Dennis Ritchie, Martin pone el foco sobre las figuras cuyo brillo y perseverancia cambiaron el mundo.Esta narra...
    Queda 1 en Stock

    46,50 €

  • BIO-INSPIRED COMPUTATION ND APPLICATION IN IMAGE PROCESSING
    YANG, X. / PAPA, J.
    Bio-Inspired Computation and Applications in Image Processing summarizes the latest developments in bio-inspired computation in image processing, focusing on nature-inspired algorithms that are linked with deep learning, such as ant colony optimization, particle swarm optimization, and bat and firefly algorithms that have recently emerged in the field.In addition to documenting...
    Queda 1 en Stock

    167,96 €

  • BASES DE DATOS TEORIA Y PRACTICA APLICADA INGENIERIA SOFTWA
    SOCAS, R. / MAHO, A. / GOMEZ, L.
    El poder de los datos: ¿qué sucede cuando consulta, almacena o gestiona información? Las bases de datos son la columna vertebral de la era digital, pues permiten almacenar, gestionar y recuperar información de manera eficiente. Desde pequeños registros personales hasta sistemas que manejan grandes volúmenes de datos, estas tecnologías hacen posible el funcionamiento de aplicac...
    Disponible en 1 semana

    28,95 €

  • OFFICE 2025
    DELGADO, J.
    La cuota de mercado de Microsoft Office a nivel mundial es abrumadora, tanto en el ámbito personal como profesional. Este manual describe con un lenguaje claro, conciso y directo los conceptos necesarios para aprovechar los recursos más importantes que ofrece la última versión de esta suite ofimática.Libera tu creatividad y expresa cualquier idea con las impactantes presentacio...
    Disponible en 1 semana

    29,95 €

  • SERVICIOS EN LA NUBE CON AWS
    CORON, B.
    Disponible en 1 semana

    27,90 €

  • OPENCV APLICACIONES PRACTICAS DE VISION ARTIFICIAL CON PYTHON
    DOMINGUEZ MINGUEZ, T.
    La visión artificial es una disciplina científica formada por un conjunto de técnicas que permiten la captura, el procesamiento y el análisis de imágenes, con el fin de extraer información de utilidad. Su objetivo es automatizar tareas reservadas hasta hace poco tiempo al ámbito humano en áreas como la seguridad, la industria, el comercio, la medicina, etc. Muchas de las técnic...
    Disponible en 1 semana

    24,85 €